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1 Introduction

Integersortingis a subclassof generalsortingwhichexistswhenthe keysto besortedareinteger

in value. If the keys to be sorted are allowed any value then the lower-bound sequential complexity

[10] to sort n keys is O(n log n). However, when the keys are restricted to be integers in the range

[1,n], the lower-bound sequential complexity [10] to sort n keys is only O(n). The problem of

integer sorting is particularly important in Monte Carlo simulations. For this reason it has been

selected as one of the kernel benchmarks used to evaluate parallel supercomputers for the Numerical

Aerodynamic Simulation (NAS) program at NASA [4].

The bucket sort algorithm [1] (or distribution counting [10]) achieves the lower-bound O(n)

time for sequential integer sorting. On a parallel machine, the performance bounds are limited

by processors as well as time. Therefore the performance bound of parallel algorithms must be

measured as the product of the processor bound, P, and the time bound, T. A parallel algorithm

is optimal if its performance l_ound PT is equal to the sequential time bound, T,, for the prob-

lem. Several optimal parallel integer sorting algorithms have been proposed (see [11, 6]). However

these algorithms have proved unsuitable for implementation on single instruction multiple data

(SIMD) or multiple instruction multiple data (MIMD) distributed memory machines like the Con-

nection Machine or the Intel iPSC/860. This paper presents two parallel integer sorting algorithms

which, although not optimal, have been implemented and shown to give good performance on these

machines. Some theoretical analysis of these algorithms is presented, however the algorithms of

this paper were borne out from an applications oriented perspective and emphasis is given to the

application analysis.

1.1 Some Definitions

A sequence of keys, {Ki]i= 0,1,...,.N- 1), will be said to be sorted if it is arranged in non-

descending order, i.e. Ki _< Ki+l _< Ki+2 .... The rank of a particular key in a sequence is the

index value i that the key would have if the sequence of keys were sorted. Ranking, then, is the

process of arriving at a rank for all the keys in a sequence. Sorting is the process of permuting the

keys in a sequence to produce a sorted sequence. If an initially unsorted sequence, Ko, Ka,..., KN-a

has ranks r(0), r(1), :.., r(N - 1), the sequence becomes sorted when it is rearranged in the order

Kr(o),Kr(1),...,Kr(N-1). Sorting is said to be stable if equal keys retain their original relative
order. In other words, a sort is stable only if r(i) < r(j) whenever Kr(i) - K_(j) and i < j. The

algorithms presented here are not stable. Key density refers to the number of equal keys in a

sequence. All logarithms are to base 2 unless otherwise indicated.
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2 Machine Models

The algorithms presented here were implemented on two different parallel machines at NASA

Ames, the Thinking Machines Connection Machine Model CM-2 and the Intel iPSC/860. The

architectures are briefly described below.

2.1 Connection Machine

The CM-2 is a massively parallel SIMD computer consisting of many thousands of bit serial data

processors under the direction of a front end computer. The system at NASA Ames consists of 32768

bit serial processors each with with 1 Mbit of memory and operating at 7 MHz. The processors and

memory are packaged as 16 in a chip. Each chip also contains the routing circuitry which allows

any processor to send and receive messages from any other processor in the system. In addition,

there are 1024 64-bit Weitek floating point processors which are fed from the bit serial processors

through a special purpose "Sprint" chip.
The Connection Machine can be viewed two ways, either as an ll-dimensional hypercube con-

necting the 2048 CM chips or a 10-dimensional hypercube connecting the 1024 processing elements.
The first view is the "tieldwise" model of the machine which has existed since its introduction. This

view admits to the existence of at least 32768 physical processors (when using the whole machine)

each storing data in fields within its local memory. The second is the more recent "slicewise" model
of the machine which admits to only 1024 processing elements (when using the whole machine) each

storing data in slices of 32 bits distributed across the 32 processors in the processing element. Both

models allow for "virtual processing", where the resources of a single data processor may be divided

to allow a greater number of virtual processors.

Regardless of the macldne model, the architecture allows interprocessor communication to pro-

ceed in three manners. For very general communication with no regular pattern, the router de-

termines the destination of messages at run time and directs the messages accordingly. This is

referred to as general router communication. For communication with an irregular but static pat-

tern, the message paths may be pre-compiled and the router win direct messages according to the

pre-compiled paths. This is referred to as compiled communication and can be 5 times faster than

general router communication. Finally, for communication which is perfectly regular and involves

only shifts along grid axes, the system software optimizes the data layout by ensuring strictly near-

est neighbour communication and uses its own pre-compiled paths. This is referred to as NEWS

(for "NorthEastWestSouth') communication. Despite the name, NEWS communication is not re-

stricted to 2-dimensional grids and up to 31-dimensional NEWS grids may be specified. NEWS

communication is the fastest.

The Connection Machine's processors are used only to store data. The program instructions

are stored on a front end computer which also carries out any scalar computations. Instructions

are sequenced from the front end to the CM through one or more sequencers. Each sequencer

3



broadcastsinstructionsto 8192processorsandcanexecuteeitherindependentof othersequencers
or combinedin two or four.

2.2 Intel iPSC/860

The Intel iPSC/860(alsoknownas Touchstone Gamma System) is based on the new 64-hit, 40

MHz i860 microprocessor by Intel. A single node of the iPSC/860 system consists of the i860, 8

MB dynamic random access memory, and hardware for communication to other nodes. The system
installed at NASA Ames consists of 128 computational nodes arranged in a seven dimensional

hypercube using the direct connect routing module and the hypercuhe interconnect teclmology

of the earlier, 80386'based iPSC/2. The point to point aggregate bandwidth is 2.8 MB/sec per

channel and the latency for the message passing is about 74 ps for message lengths over 100 bytes

(see[51).
Interprocessor communication proceeds through the send and receive system calls. Any pro-

cessor can send a message to any other processor, however the destination processor does not

acquire the message unless it issues a receive. The high communication overhead is a result of

having a software implementation of the message passing protocois.

The complete system is controlled by a system resource module (SRM), which is based on an

Intel 80386 processor. This system handles compilation and linking of source programs, as well as

loading the executable code into the hypercube nodes and initiating execution. Programs generally

make no use of the SRM once they begin execution on the nodes.

3 Fine-Scale Parallel Integer Sort

The fine-scale parallel integer sorting algorithm is sinfilar to that described in [7], however it makes

use of the send_to_queue instruction [14] on the Connection Machine. This is a very powerful

instruction that takes multiple messages for the same destination and stores them in a queue at the

receiving processor. Each processor must have the same size buffer allocated to store the queue.
This restriction is due to the SIMD nature of the Connection Machine, which employs a single stack

pointer for processor memories and thus it is impossible to allocate variable amounts of memory

across processors. The allocated buffer must also include a word in which to store the number of
elements destined for the queue. If the buffer can store q8 messages, and some number greater than

qs of messages are sent to a particular processor, then the excess messages are lost but this word

will still store the number of messages intended for that destination.

3.1 Fine-Scale Parallel "Queue-Sort" Algorithm

The n keys are stored in a one dimensional virtual processor (VP) set, call it VP1, of size n. Each
VP has an index i and stores key/_'i. The keys have range [1, m], where m is no greater than O(n),



thereforem buckets are needed to sort them. The main idea behind the algorithm is to create a

queue for each bucket, perform a prefix sum over queue elements to compute the rank, and return

the rank. The algorithm must be iterated when there are key densities greater than the maximum

queue size. The steps in a single iteration of the queue-sort algorithm are as follows:

Queue-Sort Algorithm

1. In a distinct VP set, call it VP2, allocate memory in m virtual processors for a queue of size

q,. The value of q, will depend on the available memory, in the analysis below we assume

.w. = o(-).

2. Each processor in VP1 computes a destination address in VP2 based on the value of its key.

The n processors of VP1 then collectively send their self-address to this destination using

Bend__co_queue.

3. If this is the first iteration, then the m processors of VP2 collectively perform the prefix sum

of

(IQll,IQ21,...,l¢=l)

where [Qkl indicates the number of elements in the queue for the k th bucket (i.e. the key

density). The result, for each bucket, is a sum Sk equal to the maximum rank for the keys
in that bucket. Note that the value of [Qk[ is known from execution of the send_to_queue

instruction in the previous step.

4. The m processors of VP2 compute a rank for each queue member by subtracting each mem-

ber's index (in the queue) from the maximum rank as given by Sk.

5. If more than qj messages were sent to a queue, then Sk is adjusted as

sk .-- (sk - q.)

in preparation for the next iteration.

6. The processors of VP2 send the computed ranks to the appropriate processors in VP1 as given

by the addresses stored in each queue. Processors in VP1 which receive ranks are marked

and do not participate in the next iteration.

Iterations are repeated until all the keys have been ranked.

3.2 Theoretical Analysis

Blelloch [2] describes a "scan-model" of computation for the Connection Machine (that is, the
Exclusive Read Exclusive Write (EtLEW) model but including prefix of "scan" operations as unit-

time primitives). This model is assumed in the following analysis.



The performanceof this algorithmdependson the keydensity distribution. If p_a= is the

maximum key density, then [p,na=/qs] iterations are required to complete the sort. Recall q8 is

fixed by the available memory. Assume that O(n) words of memory are available for m queue's,

such that q8 - O(n)/m. In the following we will allow m to be any number less than but evenly

divisible into n, yet greater than or equal to the number of physical processors, Np. For example,

m can be: n/log 2 n, n/log n or n for n = 232. Therefore q_ will have size O(n/m). Clearly then,

steps 1 and 5 will take 0(1) time and step 4 will take O(n/m) time, each with O(m) processors.

Communication is required in steps 2, 3 and 6; these require special consideration. In the scan

model of the CM-2, step 3 requires 0(1) time to complete using O(m) processors. The time for

step 2 will depend on the number of combinations required to complete the send_to_queue. As is

shown in the application analysis below, this is essentially given by the ratio n/m so step 2 has

time complexity O(n/m). Step 6 must be carried out iteratively using at most qm sub-iterations.

The time for each sub-iteration is 0(1) in the scan model, therefore the time to complete step 6 is

O(n/m) using O(ra) processors.
In summary, calculations carried out on VP1 have time complexity T = O(n/m) and processor

complexity P = n. Calculations carried out on VP2 have time complexity T = O(n/ra) and

processor complexity P - m. Therefore one full iteration of queue-sort has parallel complexity

(that is, PT) of O(n2/m). The sort win complete in 0(I) iterations only if pro,= is O(n/m). This

proves the following theorem:

Theorem 3.1 The queue-sort algorithm sorts a disordered sequence of n integers chosen randomly

in the range [1, O(m)l with no more than O(n/m) repeated values in time O(n/m) using n scan

model processors.

3.3 Application Analysis

The amount of arithmetic computation in queue-sort is minimal, and the greatest contribution in

time is from inter-processor communication. Inter-processor communication occurs only in steps

2, 3 and 6. Step 3 gets executed just once and has negligible effect on the overall execution time.

Therefore only steps 2 and 6 need be considered for analysis. Since network contentions is reduced

as fewer messages are transmitted, and since each successive iteration requires fewer messages

to transmit, the time required by steps 2 and 6 decreases as the calculation proceeds. In the

following, models are developed to account for the effect of network contention on communication

performance.
For analysis, a disordered sequence of n - 223 keys was created in a sequential fashion on the

front end and distributed uniformly over the physical processors of the Connection Machine. The

key's were chosen from the range [0, m) with an approximately Gaussian distribution and m - 219.

Specifica_y, if ri is a random fraction uniformly distributed over [0,1), then each key value was

obtained as:
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K_ _-- Lm(r4_+0+ r41+1 + r4i+2 + r4i+s)/4J for i = 0, 1,...,N - 1.

A sample of the key density distribution is shown in figure 1. The maximum key density is

actually 73, but the figure only shows key densities for every 128 _h key value and the maximum is

missed. There are 417,812 different keys.
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Figure 1: Sample o.f the approzimate Ganssian key density distribution.

As expected, steps 2 and 6 took the majority (_97%) of the time. Figure 2 presents the time

to sort, using 8k processors, as a function of the queue size. Note that the time spent in step 6 is

independent of the queue size. Changing the queue size changes the number iterations necessary

for queue-sort to complete. However, the total number of subiterations taken in step 6 always must

equal P,na=, for this reason its time is unaffected by the size of qa. On the other hand, the time

spent in step 2 is strongly affected by the size of qs. As qa increases, fewer iterations are required

so the overhead in using send_to_queue is paid fewer times. However, even when the number of

iterations is constant, the time spent in send_to.queue decreases with increasing qs. This implies

that send_to_queue behaves in a manner similar to a conventional send in that the communication

time is determinedby the network bandwidth. The queueing of messages occurs in the network,

so network contention has a great impact on the performance of eend_l:o_queue.

In the first iteration, all processors in VP1 are sending messages to VP2, therefore the time

required by send_to_queue is constant regardless of q,. However, in the second iteration, the
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Figure 2: Time to sort as a function of queue size for Gaussian key distribution: -- total time;

-.-.-. time for steps _ and 6; ... time for step 6.

number of active processors in VP1 decreases as q, increases (because fewer keys remain to be

ranked). Therefore the communication time decreases because of reduced network contention.

Figure 3 presents the time accumulated by each send_to_queue instruction as qo increases. It is

evident from this figure that reducing network contention is more important than decreasing the

communication start up cost in terms of improving performance. The issue of network contention

is discussed more fully below.

Figure 4 presents the fraction of active processors in VP2 per subiteration of step 6. The values

have been normalized by the total number of processors in the VP set. Prom this curve one can

determine the number of messages communicated in a particular subiteration of step 6. Network

contention affects step 6 in the same manner as step 2. As there are fewer keys remaining to

be ranked, network traffic decreases and the communication time for each subiteration of step 6

decreases.

The solid curve in figure 5 presents the time spent per subiteration of step 6 as a function of

the natural logarithm of the fraction f of active processors in VP2. It has been normalized by the

time spent in the first iteration (note that only 80% of the processors in VP2 were active in the

first iteration). The curve is approximately linear for In(f) > -4, the abrupt deviation of the curve

for In(f) < -4 occurs because the number of active virtual processors in VP2 drops below 8k, the
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number of physical processors. For purposes of analysis we can approximate this curve as

1+0.251nf _
T8 = (0.55+ 0.451 + 0.25in(0,8)1"'0

(1)

where Ts is the total time, f is the fraction of processors active, and Tso is the time to send one

message with f = 0.8. The experiment measured To = 0.184 see with 8k processors, therefore

To = 0.189+ 0.02191n/. (2)

The broken curvein figure5 shows the model for Ta. Note that it isvalidonlywhilethe number

of activevirtualprocessorsisgreaterthan the number ofphysicalprocessorswhich,in thiscase,

implies f > 2 -6. For smaller values of `f we use T,o = 0.55T,0.

The same sort of approximation can be made for send_to_queue with the data from figure 3,

however it is necessary to model the number of message collisions expected. This can be approx-

imated by the ratio Ran = Nvpl/Nvp2, where N_I is the number of processors sending messages

from VP1 and N,,p2 is the number of processors receiving messages at VP2. Both these num-

bers can be obtained from figure 4. The solid line in figure 6 presents the the time measured for

send__o_queue as a function of R_et. For Raa > 4, the curve is approximately linear, as expected.

The abrupt deviation from linearity for R,a < 4 is due to both Nvpl and N_p2 dropping below Np,
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Figure 4: Fraction, f, of processors active in VP2 per subiteration of step 6 in the queue-sort

algorithm for the Gaussian key density distribution.

the number of physical processors. One can model send_to_queue by

T, = (n., - n.,.)To. (3)

where Ran. is the value of R,et where Nwl and Nvp2 drop below Np, and Tq. is chosen to give
the correct time for the initial value of R, ct. For the Gaussian key density distribution, the first

iteration had R,ct = 20.1 and the measured time for send_to.queue was 11.0 sec, thus Tq. = 0.68

sec with Raet. = 4.0. The broken curve in figure 5 shows our model for Tq. Note that it is valid

only while Raet > 4.0, and for smaller values the model uses Tq = 0.24, the time measured for

N,_I = 2Vw2 = 1.
In order to test these models, queue-sort was applied to a disordered sequence of integer keys

sampled from the range [0, m) this time with a linear distribution. Specifically, key values were

assigned as

with m = 219. A sample of the key density distribution is shown in figure 7; the maximum key
density was 58 and there were 507810 different keys. Figure 8 presents the number of active

processors in VP2 per subiteration of step 6. Using figure 8, the model for To predicts a time of

8.1 see to complete step 6. The measured time was 7.7 see, which is within 5% of our predicted

time. Figure 9 presents the measured and predicted times for Tq as a function of Raa. The
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agreement is very close especially for large values of R,ct, which, of course, is how the model was

calibrated. Finally, figure 10 presents the measured and predicted times for queue-sort for the

density distribution of figure 7. Again there is excellent agreement, with the model being accurate
to 5% of the measured times.

It should be obvious from these results that the effect of decreasing network contention on com-

munication performance must be considered when analysing communication-iterative algorithms

like queue-sort. The success of these models in predicting communication performance as a func-

tion of network contention is extremely encouraging and indicates that the performance of complex

and changing communication patterns can be predicted with some accuracy using relatively simple
models for communication.

4 Medium-Scale Parallel Integer Sort

The medium-scale parallel integer sorting algorithm attempts to load balance the sorting problem

through an approximate representation of the key density distribution. Typically, in a sequential
bucket sort there are rn buckets for rn possible key values. The parallel algorithm, however, uses

m' barrels (where m' < m) to determine the number of keys in each m/m' subrange of key values.
The counts stored in the barrels are used to approximate the expected loads for each processor and

thereby determine a balanced decomposition. The idea shares some similarities to that of sampling
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the sequenceto obtaina balanced decomposition, although the latter has been applied primarily

for the case of general comparison based sorting. Huang and Chow [9] first proposed sampling the

sequence as a means of determining an appropriate partitioning for the data. Shi and Schaeffer

[13] apply the same idea with great success in their Parallel Sorting by Regular Sampling (PSKS)

algorithm. In PSKS, a regular sample taken from the (locally ordered) sequence is globally sorted

and itself gets sampled to determine the parallel decomposition used in the final global ordering of

the sequence. Barrel sort differs in that it uses information from the whole sequence, not just a

sample, to determine a suitable parallel decomposition.

4.1 Medium-Scale Parallel "Barrel-Sort n Algorithm

The n keys are evenly distributed across p processors such that each processor, k (k E [1,p]) has

keys {Kill E [(k- 1)n/p, kn/p)). In the following, the notation {-) will be used to indicate a

sequence of n elements distributed in some unspecified manner over p processors. The keys have

range [1,m], where m is no greater than 0(n), therefore m buckets are needed to sort them. Since

it is impossible for each processor to keep m buckets, the processors have to work on some subrange

of key values. The main idea behind the barrel.sort algorithm is to use a smaller number, m _, of
barrels to determine how to distribute the m buckets. The size of m _ will depend on the available

memory. The steps in the algorithm axe as follows:

Barrel-Sort Algorithm

1. Each processor counts the number of keys falling into each of its rn_ barrels. Let Bjk be

the jth barrel in processor k. Each barrel, Bjk, will store the count of keys in the subrange

[jmlm', (j + 1)mira') in processor k.

2. Compute the sum B_ = E_-x B_k, and copy the result to all processors.

3. Use B_ to distribute subranges of [1,nq such that each processor wm receive approximately the
same number of keys. Fora perfect load balance, each processor, k, should handle a subrange
[ak,bk) with n/p keys. Values of ak, bk which approximately yield this load distribution are
determined from Bj as fonows:

(a) Perform a prefix sum on B_. Let the result be Sj.

(b) In all processors, for k = 1,...,p, find the index Ik in Sj such that Slh <_ kn/p < Slk+l.

(c) Set bk- Ikm/m'.

(d) Set al = 1,and ak = bk-1 for k > 1.

4. Each processordetermineswhich subrange [ak,bk) containseach of itskeys and storesthe

resultin a localarray _. Each value in P/ isa pointerto the processorwhose assigned

subrange ofbucketscontainskey valueKi. This steprequiresa binarysearchin {(ak,bk)[kE

[1,p1}.

12
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Each processor sends to all other processors the keys in that other processor's subrange. This

is carried out by having each processor rank its list of keys according to Pi and permute the

key and index sequences, {Ki) and {i), accordingly. Let _Kq) be the sorted (Ki) and let

_Iq) be the index in _Ki) for _Kq). Note that Pi has range [1,p] and sorting is carried out
strictly local to each processor. Each processor then sends the appropriate subsequence of

_Kq) and {Iq) to the corresponding processor. This is an all-to-all (or complete exchange)

type of communication with message lengths of varying sizes which permutes (Kq) into a

new sequence _Kr). At the end of this step, every processor k stores a subsequence of {KT),

approximately of length n/p, and the corresponding subsequence of _Ir), where (It) are the

indices in {Ki) for the keys in (Kr). Furthermore, each subsequence of _Kr) has range

[ak, bk).

Each processor ranks its subsequence of keys and permutes its subsequence of (IT) accordingly.

Let (Is) be this permuted sequence. Permuting (Kr) at this point would result in a sorted

sequence of keys. However, the objective is not to sort the original sequence of keys but rather

to find the permutation which sorts it (under the assumption that the records associated with

the keys are large and one wants to permute them just once). Nonetheless, assume such a

permutation was carried out, then {Ka} would be the sorted sequence of {Ki}, and {Ia}

would be the index in {Ki} for {Ka}. Therefore the permutation, {P_}, which converts {Ki}

into {Ks} is computed as

RCXs)*-- 8.

This is carried out as follows:

(a) From (Is), create an array of pointers Ps pointing to the processor which stores Ki(Is)

in the original sequence {Ki).

(b) Use P, to create p- 1 buffers in each processor to store the local values of (Is) and

(8) which need to be sent to other processors. Where Ps points to the local processor,

compute the rank R(I,) as described above.

(c) Each processor sends its p - 1 buffers to the p - 1 other processors. This is an all-to-all
type of communication with message lengths of varying sizes. At the end of this step

each processor has the values of I, and s corresponding to its subsequence of (Ki).

(d) Each processor computes ranks R(Is) with its received values of Is and s.

4.2 Theoretical Analysis

The following analysis is based on the distributed memory MIMD model presented by the lute]

iPSC/860. Note that this model is weaker than either the scan mode] or the strict EREW mode]
since it does not allow exclusive reads from parallel memory. Parallel memory access must be
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initiated by a send instruction and is completed only by a receive instruction. This model here

will be referred to as the Send Receive (SR) model.

For purposes of analysis, assume rn_ = p2. Each processor stores n/p keys, so step 1 takes

O(n/p) time and steps 2 and 3 take O(p) and O(p 2) time respectively. Step 4 requires each

processor to perform n/p local binary searches over p elements and thus takes O(n/plogp) time.

Step 5 requires each processor to locally sort nip elements in the range [1,p]. This can be carried

out with sequential bucket sort in O(n/p) time. Finally, the time for step 6 will depend on how

successful step 3 was in its decomposition of the key range. Assuming that each processor has

O(n/p) keys, then step 6 will require O(n/p) time. Note that step 6a does not require searching

because _Ki} is evenly distributed across the processors.
It is conceivable for there to be more than O(n/p) keys in a processor in step 6. Such a situation

would arise if the key density distribution had a large number of repeated keys. Specifically, there

would have to be at least one barrel with greater than O(n/p) keys. Since each barrel accounts

for m/p 2 buckets, this implies there should be no more than O(n/p) repeated keys in each m/p 2

subrange of key values. This proves the following theorem:

Theorem 4.1 The barrel.sort algorithm sorts a disordered sequence of n integers chosen randomly

in the range [I, O(n)] with no more than O(n/p) repeated values per O(n/p 2) subrange in time

O(n/plogp) using p SR processors.

4.3 Application Analysis

Unlike queue-sort, the amount of arithmetic computation in barrel-sort can be a substantial part
of the calculation. The difference is due to the medium-grain parallelism targeted by barrel-sort.

The major contributions from arithmetic computation occur in steps 1, 4, 5 and 6. Inter-processor

communication takes place in steps 2, 5 and 6.
The Gaussian-distributed disordered sequence used to analyse queue-sort was also used with

barrel sort (see figure 1). With m - 219, m s -- 211 and n = 223, using all 128 processors the time to

complete barrel-sort was 3.20 sec. The profiling was carried out with 64 processors for which the
total time was 5.25 sec. Of this, step 2 required 0.10 sec, and the communication in steps 5 and 6

required 1.08 and 0.69 sec respectively. The remaining 3.38 sec were due to computation.

Communication time, Tcomr_, on the iPSC/860 is adequately modelled by

Twm,_(k) = to + kt,_,d (4)

where k is the number of bytes in the message, to is the latency, and tsend is the time per byte. Using

the numbers from [5], for long messages (greater than 100 bytes), to = 149# sec and tmend = 0.36#

sec and for short messages to,h = 74p sec and t,end,h = 0.19p sec. Step 2 can be implemented using

a pairwise exchange algorithm such that only logp messages are required per processor, each of

length 4rn s bytes. Each complete exchange in steps 5 and 6 is implemented as 3(p- 1) messages per
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processor,with (p- i) messages oflength4 bytesand 2(p- i) messages approximatelyoflength

4n/p 2bytes.The actuallengthdepends on decompositiondeterminedinstep3;forthe testcaseall

the message lengthswere within9% ofthisvalue.Taken altogether,interprocessorcommunication

takes

T_om,_ = [4(p- 1)+ logp]to + 2(p- 1)to,h + 414(P- 1)n/p 2 + m'logp]t,e,_d + 8(p-- 1)t,_doh. (5)

For 64 processors and sequence parameters above, (5) works out to 0.81 sec. The measured time

was 1.87 sec. The difference between the expected and measured time is attributable to an idiosyn-

crasy in the iPSC communication hardware wherein a send and receive occurring a short interval

apart axe carried out sequentially when they could be carried out concurrently. This effectively dou-

bles the communication time in a complete exchange, bringing the predicted time up to 1.58 sec.

Furthermore, accounting for the longest messages in each step of the exchange (which amounted

to a total transmission 7% greater than expected) results in a predicted time of 1.68 sec, which

is within 10% of the measured time. Bokhari [3] describes a complete exchange algorithm on the

iPSC which does not suffer from this idiosyncrasy and would conceivably result in much improved

communication performance.

5 Discussion

Table 1 presents the best results for queue-sort and barrel-sort on the Connection Machine and the

iPSC respectively. Times are given for both the Ganssian distributed and the linear distributed

key densities (see figures 1 and 7). The maximum queue size in queue-sort was made large enough

to allow completion in a single iteration. The number of barrels used in barrel-sort was 2048. The

current implementation of barrel-sort could not be run with less "than 64 processors because of

memory restrictions, although some modifications should allow 32 processor results to be obtained

in the near future. For comparison, the performance of a partially vectorized bucket sort (see [8])

on 1 and 8 processors of the Cray YMP is also given.

It is encouraging to see that the performance of queue-sort and barrel-sort are comparable.

Queue-sort involves virtually no arithmetic computation but depen& on many single-word trans-

missions to order the data. The total amount of data motion is about the same for both queue-sort

and barrel-sort. Queue-sort essentially consists of n single-word transmissions using n processors

followed by n single-word transmissions using n/m processors. Therefore for queue-sort to be com-

petitive the overhead on message transmission must be very low. On the other hand, barrel-sort

consists of two complete exchanges each involving p- 1 transmissions of approximately nip 2 words

using p processors. Barrel-sort attempts to minimize the number of messages transmitted at the ex-

pense of additional arithmetic computation. Therefore barrel-sort should perform well on machines

with a high overhead on message transmission so long as medium-scale parallelism is available.

The Cray YMP performance is given for comparison. The 8 processor results were microtasked

and used a partially vectorized bucket sorting algorithm with the merging described in [8]. Both
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Algorithm Processorstime (sec) time (sec)
Gaussian Linear

queue-sort 8k 21.51 16.80

(on CM) 16k 11.15 8.60
32k 5.60 4.38

barrel-sort 64 5.25 5.53

(on iPSC) 128 3.20 3.52
bucket-sort

(on YMP)

1

8

2.05

1.55

2.05

1.55

Table 1: Performance of queue-sort and barrel-sort.

queue-sort and barrel-sort approach the performance of bucket-sort on the YMP. In general, sorting

requires a very high memory bandwidth and relatively little computation. The high memory
bandwidth is a well known feature of the Cray machines and one expects good performance on the

YMP for this problem. It is indicative of the severe bandwidth requirement (and the high overhead

in microtasking) that 8 processors performed only 33% faster than one processor. Both the CM

and the iPSC achieve close to the YMP performance on integer sorting despite the relative slowness

of their respective communication networks in comparison to the YMP memory bandwidth. This

result reflects the suitability of queue-sort and barrel-sort for parallel integer sorting on the CM

and the iPSC respectively.

6 Conclusions

Two new parallel integer sorting algorithms, queue-sort and barrel-sort, have been presented and

analysed in detail. These algorithms do not have optimal parallel complexity, yet they show very

good performance in practice. Queue-sort is designed for fine-scale parallel architectures which allow

the queueing of multiple messages to the same destination. Barrel-soft'is designed for medium-

scale parallel architectures with a high message passing overhead. The performance results from

the implementation of queue-sort on a Connection Machine and barrel-sort on a 128 processor

iPSC/860 are comparable and almost as good as a partially vectorized bucket sort on the Cray

YMP.

Acknowledgements I wish to thank my colleagues, John Krystynak of NASA Ames and Carl

Williams of R/ACS, for their insightful comments upon reviewing the manuscript.

References

[1] Aho, A.V., Hopcroft, J.E., UUma_, J.D., The Design and Analysis of Computer Algorithms,

16



Addison-WesleyPublishingCo.,1974.

[2] Bldloch,G., Scans as Primitive Parallel Operations. Proceedings of 1987 Int. Conf. on Parallel

Processing, University Park, PA, 1987.

[3] Bokhari, S.H., Complete Exchange on the iPSC-860. ICASE Report No. 91-4, NASA Langley

Research Center, Hampton, VA 23665, January 1991.

[4] Bailey, D.H., Barton, J., Lasinski, T., and Simon, H., The NAS Parallel Benchmarks. Technical

Report RNR-91-02, NASA Ames Research Center, Moffett Field, CA 94035, January 1991.

[5] Barszcz, E., One Year with an iPSC/860. Technical Report RNR-91-001, NASA Ames Re-

search Center, Moffett Field, CA 9403, January 1991.

[6] Cldebus, B.S., Parallel Iterated Bucket Sort. Information Processing Letters, vol. 31, no. 4,

pps. 181-183, 1989.

[7] Dagum, L., On the Suitability of the Connection Machine for Direct Particle Simulation.

Technical Report 90.26, RIACS, NASA Ames Research Center, Moffett Field, CA 94035, June

1990.

[8] Dagum, L., Sorting for Particle Flow Simulation On the Connection Machine. In Horst D.

Simon, editor, Research Directions in Parallel CFD, MIT Press, Cambridge(to appear), 1991.

[9] Huang, J.S. and Chow, Y.C., Parallel Sorting and Data Partitioning by Sampling. COMPSAC

83, pps. 627-631, Chicago IL, Nov 7-11, 1983.

[10] Knuth, D.E. The Art of Computer Programming: Sorting and Searching. Addison-Wesley

Publishing Co., Menlo Park, 1973.

[11] P_jasekaran, S., Re.if, J.H. Optimal and Sublogarithmie Time Randomized Parallel Sorting

Algorithms. SIAM J. Comput., Vol. 18, No. 3, pps. 594-607, 1989.

[12] Schreiber, R. An Assessment of the Connection Machine. Technical Report 90.40, RIACS,

NASA Ames Research Center, Moffett Field, CA 94035, June 1990.

[13] Shi, H., Schaeffer, J., Parallel Sorting by Regular Sampling. Journal of Parallel and Distributed

Computing, to appear 1991.

[14] Thinking Machines Corp. The Connection Machine System: Paris Reference Manual, Version

6.0. Thinking Machines Corp., Cambridge MA, 1990.

17



o
o

!

I I ," , :i /"/,"
! J :" I

! i * i !
i ._ ! i

i C/ i

i /X _ i

i ." _ i i

- i i i

i i
$ 10 1.5 20

R act
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Figure 9: Time 1or send_to_queue as function of l_a, the ratio of active processors in VP1 to

active processors in VP2, with the linear key density distribution: -- measured; - - - predicted by
model.
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Figure 10: Time to complete queue-sort as function of queue size _th the linear key density dis-

tribution: -- measured; - - - predicted by models.
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